
Lecture 16-18

Definition 1. An n-vertex graph with average degree d and girth g is called Moore

Graph if n = n0(d, g).

Theorem 1 (Hoffman-Singleton). If there exists a d-regular Moore graph of girth

g = 5, then d ∈ {2, 3, 7, 57}.

Proof. Let G be such a graph. Then |V (G)| = n = n0(d, 5) = 1+d+d(d−1) = d2+1.

Since G is Moore graph with girth 5, the diameter of d is 2. Thus u, v have a unique

common neighbor for all non-adjacent u, v. Let A be the adjacency matrix of G.

Then A2 + A− (d− 1)I = J . Here J is n× n matrix with all entries equal 1.

Note that A1 = d1, since A is d-regular. It’s easy the multiplicity of eigenvalues d

is 1. Suppose v is an eigenvector of A with respect to some eigenvalue x 6= d. Then

vT1 = 0. Also note that J1 = n1 and rank(J) = 1. So J has eigenvalues 0(n−1) and

n(1), and thus Jv = 0.

Then A2v+Av− (d−1)v = Jv, which implies x2 +x− (d−1) = 0. This equation has

two roots x1,2 = 1
2
(−1±

√
4d− 3). So we can suppose A has eigenvalues d(1), x

(r)
1 , x

(s)
2 .

Then r + s = n− 1 = d2.

Note that 0 = tr(A) = d+ rx1 + sx2 = d− r+s
2

+ r−s
2

√
4d− 3.

If x1, x2 are irrational, then r = s, d = r and so 2r = d2 = r2, which yields r = s =

d = 2.

If x1, x2 are rational, then
√

4d− 3 = m must be an integer and so r is also an integer.

Then d = m2+3
4

and s = d2 − r = (m
2+3
4

)2 − r.
Thus 0 = d− r+s

2
+ r−s

2

√
4d− 3 = m2+3

4
− (m

2+3
4

)2/2 + (2r − (m
2+3
4

)2)m/2. That is,

m5 +m4 + 6m3 − 2m2 + (9− 64r)m = 15.

In particular, m is a factor of 15. Also note that d = m2+3
4

> 2. So m ∈ {3, 5, 15}.
And so d ∈ {3, 7, 57}.
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Remark. It’s known that there exists d-regular Moore graphs with girth 5 for

d = 2, 3, 7. But this is open for d = 57.

Definition 2. The k-core of a graph G is the largest subgraph of min-degree at least

k. The k-core can be found by repalcing deleting vertices of degree less than k. So the

k-core may be empty.

Fact 1. k-core is well-defined.

Proof. Exercise.

Let Hk,n be the n-vertex complement of Kn−k. Clearly, Hk,n has empty (k + 1)-core

and e(Hk,n) = k(n− k) +
(
k
2

)
.

Lemma 2. If a graph G is an n-vertex grapg with at least k(n− k) +
(
k
2

)
edges, then

G has a non-empty (k + 1)-core unless G = Hk,n.

Lemma 3. Let H be a graph comprising a cycle C with a chord, and let (A,B) be

a non-trivial pritition of V (H). Then for ` < |V (H)|, there is a graph P of length `

with an endpoint in A and the other endpoint in B. Unless H is bipartite and (A,B)

is a bipartition of H and ` even.

Proof. Assume C = 0− 1− 2− · · · − (n− 1)− 0 with chord 0− r.
Let m be smallest integer k such that there is no A− B path of length k only using

edges in E(C).

If we let χ be the characteristic function of set A, then χ(j) = χ(j + m) for all j.

And so m|n.

Note that by the definition of m, for all ` that ` - j, there exists A−B path of length

`. So we only need to consider A−B paths of length multiples of m.

Case 1. The chord 0− r satisfies 1 < r 6 m.

Since m - m+ r− 1, there is some −m < j 6 0 such that χ(j) 6= χ(j +m+ r− 1) =

χ(j + km+ r − 1) for all integer k.

Consider the path P = j, j + 1, · · · , 0, r, r+ 1, · · · , j +m+ r− 1, · · · , j + km+ r− 1,

where 1 6 k 6 n
m
− 1. It’s an A−B path of length km.

Case 2. m < r < n−m.

Given j that −m 6 j 6 0, consider 2 paths P = j, j + 1, · · · , 0, r, r − 1, · · · , r, r −
1, · · · , r− j −m+ 1 and Q = m+ j,m+ j − 1, · · · , 0, r, r+ 1, r− j − 1. If P or Q is
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an A−B path (of length m), then we can extend it to an A−B path of length km,

by m vertices at a time, until km+ 1 > n− 2(m− 1). Thus we can find A−B path

of length km for every 1 6 k 6 n
m
− 1.

Now we consider χ(j) = χ(r − j + m + 1) and χ(m + j) = χ(r − j − 1) for all

−m 6 j 6 0. Then χ(v + 2) = χ(v + 2) where v = r − j − 1 ∈ [r − 1, r + m − 1]

as −m 6 j 6 0, which implies χ(v) = χ(v + 2) for all v. So m = 2 and 2 | n, which

means the vertices of C are alternatively in A and in B (So all the paths on C of odd

lengths are A− B paths). In this case, if the chord 0− r are in the same part, then

one can easily check that H has all A− B paths. Otherwise, the chord 0− r join A

and B then (A,B) is the bipartition of H.

Theorem 4 (Bondy-Simonovits). For all n > (3(k − 1))k, ex(n,C2k) 6 2kn1+ 1
k .

Proof. Suppose G is an n-vertex C2k-free graph with e(G) > 2kn1+ 1
k . Then G

has a bipartite subgraph H ′ with e(H ′) > kn1+ 1
k . Furthermore, H ′ has a bipartite

subgraph H with δ(H) > kn
1
k . Let T be a BFS-tree of H with root x and let

Li = {y ∈ V (H) : dH(x, y) = i} for i = 0, 1, · · · , k.

Claim 1. eH(Li−1, Li) 6 (k − 1)(|Li−1|+ |Li|) for i = 1, · · · , k.

Proof of Claim 1. Clearly, it’s for i = 1.

Suppose eH(Li−1, Li) > (k−1)(|Li−1|+ |Li|) for some i = 2, · · · , k. Then H(Li−1, Li)

has a bipartite subgraph H1 with δ(H1) > k. And then H1 contains an even cycle C

(of length at least 2k) with a chord.

Let A = Vi−1 ∩ V (C) and B = Vi ∩ V (C), then (A,B) is a bipartition of C. Let y be

the vertex that is farthest from root x such that every vertex of Y is a T -descendant

of y. The paths inside T that connect y to A branch at y. Pick one such branch,

defined by some child z of y, and let A′ be the set of the T -descendants of z that lie

in A. Let B′ = V (C)− A′. Since A− A′ 6= ∅, B is not an independent set of C.

Let ` be the distance between x and y. We have ` < i and 2k−2i+2` < 2k 6 |V (C)|.
By Lemma 3, we can find a path P ⊂ C of length 2k − 2i + 2` that starts in some

a ∈ A′ and b ∈ B′. Since the length of P is even, we have b ∈ A. Let Pa and

Pb be the unique paths in T that connect y to respectly a and b. They intersect

only in the vertex y by the definition of A′. Thus P ∪ Pa ∪ Pb forms a C2k in H, a

contradiction.

Claim 2. |Li| > n
1
k |Li−1|, for i = 1, · · · , k.

Proof of Claim 2. We prove it by induction on i.

Base case i = 1 is trivial.
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Suppose i > 2 and claim holds for all j < i, then by Claim 1,

kn
1
k |Li−1| 6

∑
v∈Li−1

dH(v) = eH(Li−2, Li−1) + eH(Li−1, Li)

6 (k − 1)(|Li−2|+ 2|Li−1|+ |Li|)

6 (k − 1)(3|Li−1|+ |Li|).

Thus |Li| > [ k
k−1n

1
k − 3]|Li−1| > n

1
k |Li−1|.

So by Claim 2, we have Lk > n, a contradiction!

Conjecture 5 (Erdös-Simonovits). ex(n,C2k) = Θ(n1+ 1
k ).

The best upper bound was recently obtained.

Theorem 6 (Bukh-Jiang, 2016). ex(n,C2k) 6 80
√
k log kn1+ 1

k + 10k2n for all large

n.

Theorem 7. Let k be an integer and let G be an n-vertex graph. If e(G) = Ω(kn),

then G contains k even cycles of consecutive lengths, say C2r, C2r+2, · · · , C2r+2k−2 for

some r.

Proof. Exercise.

Theorem 8 (Liu-Ma). Every graph G with δ(G) > 2k + 1 has k even cycles of

consecutive lengths.

Remark. 2k + 1 is tight, by considering G = K2k+2.

Lemma 9 (Posá’s Lemma). Let G be a graph satisfying that |N(X)| > 2|X| for every

X ⊂ V (G) with |X| 6 t. Then G contains a cycles of length at least min{3t, n} with

a chord.

Proof. Exercise.
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