Lecture 16-18

Definition 1. An *n*-vertex graph with average degree d and girth g is called **Moore Graph** if $n = n_0(d, g)$.

Theorem 1 (Hoffman-Singleton). If there exists a d-regular Moore graph of girth g = 5, then $d \in \{2, 3, 7, 57\}$.

Proof. Let G be such a graph. Then $|V(G)| = n = n_0(d, 5) = 1 + d + d(d-1) = d^2 + 1$. Since G is Moore graph with girth 5, the diameter of d is 2. Thus u, v have a unique common neighbor for all non-adjacent u, v. Let A be the adjacency matrix of G. Then $A^2 + A - (d-1)I = J$. Here J is $n \times n$ matrix with all entries equal 1.

Note that $A\mathbb{1} = d\mathbb{1}$, since A is d-regular. It's easy the multiplicity of eigenvalues d is 1. Suppose v is an eigenvector of A with respect to some eigenvalue $x \neq d$. Then $v^T \mathbb{1} = 0$. Also note that $J\mathbb{1} = n\mathbb{1}$ and rank(J) = 1. So J has eigenvalues $0^{(n-1)}$ and $n^{(1)}$, and thus Jv = 0.

Then $A^2v + Av - (d-1)v = Jv$, which implies $x^2 + x - (d-1) = 0$. This equation has two roots $x_{1,2} = \frac{1}{2}(-1 \pm \sqrt{4d-3})$. So we can suppose A has eigenvalues $d^{(1)}, x_1^{(r)}, x_2^{(s)}$. Then $r + s = n - 1 = d^2$.

Note that $0 = tr(A) = d + rx_1 + sx_2 = d - \frac{r+s}{2} + \frac{r-s}{2}\sqrt{4d-3}$. If x_1, x_2 are irrational, then r = s, d = r and so $2r = d^2 = r^2$, which yields r = s = d = 2.

If x_1, x_2 are rational, then $\sqrt{4d-3} = m$ must be an integer and so r is also an integer. Then $d = \frac{m^2+3}{4}$ and $s = d^2 - r = (\frac{m^2+3}{4})^2 - r$. Thus $0 = d - \frac{r+s}{2} + \frac{r-s}{2}\sqrt{4d-3} = \frac{m^2+3}{4} - (\frac{m^2+3}{4})^2/2 + (2r - (\frac{m^2+3}{4})^2)m/2$. That is,

$$m^5 + m^4 + 6m^3 - 2m^2 + (9 - 64r)m = 15.$$

In particular, m is a factor of 15. Also note that $d = \frac{m^2+3}{4} \ge 2$. So $m \in \{3, 5, 15\}$.

Remark. It's known that there exists *d*-regular Moore graphs with girth 5 for d = 2, 3, 7. But this is open for d = 57.

Definition 2. The *k*-core of a graph G is the largest subgraph of min-degree at least k. The k-core can be found by repalcing deleting vertices of degree less than k. So the k-core may be empty.

Fact 1. k-core is well-defined.

Proof. Exercise.

Let $H_{k,n}$ be the *n*-vertex complement of K_{n-k} . Clearly, $H_{k,n}$ has empty (k+1)-core and $e(H_{k,n}) = k(n-k) + \binom{k}{2}$.

Lemma 2. If a graph G is an n-vertex grapg with at least $k(n-k) + \binom{k}{2}$ edges, then G has a non-empty (k+1)-core unless $G = H_{k,n}$.

Lemma 3. Let H be a graph comprising a cycle C with a chord, and let (A, B) be a non-trivial pritition of V(H). Then for $\ell < |V(H)|$, there is a graph P of length ℓ with an endpoint in A and the other endpoint in B. Unless H is bipartite and (A, B)is a bipartition of H and ℓ even.

Proof. Assume $C = 0 - 1 - 2 - \dots - (n - 1) - 0$ with chord 0 - r.

Let m be smallest integer k such that there is no A - B path of length k only using edges in E(C).

If we let χ be the characteristic function of set A, then $\chi(j) = \chi(j+m)$ for all j. And so m|n.

Note that by the definition of m, for all ℓ that $\ell \nmid j$, there exists A - B path of length ℓ . So we only need to consider A - B paths of length multiples of m.

Case 1. The chord 0 - r satisfies $1 < r \leq m$.

Since $m \nmid m + r - 1$, there is some $-m < j \leq 0$ such that $\chi(j) \neq \chi(j + m + r - 1) = \chi(j + km + r - 1)$ for all integer k.

Consider the path $P = j, j + 1, \dots, 0, r, r + 1, \dots, j + m + r - 1, \dots, j + km + r - 1$, where $1 \leq k \leq \frac{n}{m} - 1$. It's an A - B path of length km. Case 2. m < r < n - m.

Given j that $-m \leq j \leq 0$, consider 2 paths $P = j, j + 1, \dots, 0, r, r - 1, \dots, r, r - 1, \dots, r, r - j - m + 1$ and $Q = m + j, m + j - 1, \dots, 0, r, r + 1, r - j - 1$. If P or Q is

an A - B path (of length m), then we can extend it to an A - B path of length km, by m vertices at a time, until $km + 1 \ge n - 2(m - 1)$. Thus we can find A - B path of length km for every $1 \le k \le \frac{n}{m} - 1$.

Now we consider $\chi(j) = \chi(r - j + m + 1)$ and $\chi(m + j) = \chi(r - j - 1)$ for all $-m \leq j \leq 0$. Then $\chi(v+2) = \chi(v+2)$ where $v = r - j - 1 \in [r - 1, r + m - 1]$ as $-m \leq j \leq 0$, which implies $\chi(v) = \chi(v+2)$ for all v. So m = 2 and $2 \mid n$, which means the vertices of C are alternatively in A and in B (So all the paths on C of odd lengths are A - B paths). In this case, if the chord 0 - r are in the same part, then one can easily check that H has all A - B paths. Otherwise, the chord 0 - r join A and B then (A, B) is the bipartition of H.

Theorem 4 (Bondy-Simonovits). For all $n \ge (3(k-1))^k$, $ex(n, C_{2k}) \le 2kn^{1+\frac{1}{k}}$.

Proof. Suppose G is an n-vertex C_{2k} -free graph with $e(G) > 2kn^{1+\frac{1}{k}}$. Then G has a bipartite subgraph H' with $e(H') > kn^{1+\frac{1}{k}}$. Furthermore, H' has a bipartite subgraph H with $\delta(H) > kn^{\frac{1}{k}}$. Let T be a BFS-tree of H with root x and let $L_i = \{y \in V(H) : d_H(x, y) = i\}$ for $i = 0, 1, \dots, k$.

Claim 1. $e_H(L_{i-1}, L_i) \leq (k-1)(|L_{i-1}| + |L_i|)$ for $i = 1, \dots, k$.

Proof of Claim 1. Clearly, it's for i = 1.

Suppose $e_H(L_{i-1}, L_i) > (k-1)(|L_{i-1}| + |L_i|)$ for some $i = 2, \dots, k$. Then $H(L_{i-1}, L_i)$ has a bipartite subgraph H_1 with $\delta(H_1) \ge k$. And then H_1 contains an even cycle C (of length at least 2k) with a chord.

Let $A = V_{i-1} \cap V(C)$ and $B = V_i \cap V(C)$, then (A, B) is a bipartition of C. Let y be the vertex that is farthest from root x such that every vertex of Y is a T-descendant of y. The paths inside T that connect y to A branch at y. Pick one such branch, defined by some child z of y, and let A' be the set of the T-descendants of z that lie in A. Let B' = V(C) - A'. Since $A - A' \neq \emptyset$, B is not an independent set of C.

Let ℓ be the distance between x and y. We have $\ell < i$ and $2k - 2i + 2\ell < 2k \leq |V(C)|$. By Lemma 3, we can find a path $P \subset C$ of length $2k - 2i + 2\ell$ that starts in some $a \in A'$ and $b \in B'$. Since the length of P is even, we have $b \in A$. Let P_a and P_b be the unique paths in T that connect y to respectly a and b. They intersect only in the vertex y by the definition of A'. Thus $P \cup P_a \cup P_b$ forms a C_{2k} in H, a contradiction.

Claim 2. $|L_i| \ge n^{\frac{1}{k}} |L_{i-1}|$, for $i = 1, \dots, k$.

Proof of Claim 2. We prove it by induction on i.

Base case i = 1 is trivial.

Suppose $i \ge 2$ and claim holds for all j < i, then by Claim 1,

$$kn^{\frac{1}{k}}|L_{i-1}| \leq \sum_{v \in L_{i-1}} d_H(v) = e_H(L_{i-2}, L_{i-1}) + e_H(L_{i-1}, L_i)$$

$$\leq (k-1)(|L_{i-2}| + 2|L_{i-1}| + |L_i|)$$

$$\leq (k-1)(3|L_{i-1}| + |L_i|).$$

Thus $|L_i| \ge \left[\frac{k}{k-1}n^{\frac{1}{k}} - 3\right]|L_{i-1}| \ge n^{\frac{1}{k}}|L_{i-1}|.$ So by Claim 2, we have $L_k \ge n$, a contradiction!

Conjecture 5 (Erdös-Simonovits). $ex(n, C_{2k}) = \Theta(n^{1+\frac{1}{k}}).$

The best upper bound was recently obtained.

Theorem 6 (Bukh-Jiang, 2016). $ex(n, C_{2k}) \leq 80\sqrt{k \log k}n^{1+\frac{1}{k}} + 10k^2n$ for all large *n*.

Theorem 7. Let k be an integer and let G be an n-vertex graph. If $e(G) = \Omega(kn)$, then G contains k even cycles of consecutive lengths, say $C_{2r}, C_{2r+2}, \cdots, C_{2r+2k-2}$ for some r.

Proof. Exercise.

Theorem 8 (Liu-Ma). Every graph G with $\delta(G) \ge 2k + 1$ has k even cycles of consecutive lengths.

Remark. 2k + 1 is tight, by considering $G = K_{2k+2}$.

Lemma 9 (Posá's Lemma). Let G be a graph satisfying that |N(X)| > 2|X| for every $X \subset V(G)$ with $|X| \leq t$. Then G contains a cycles of length at least min $\{3t, n\}$ with a chord.

Proof. Exercise.